TSV 3D IC技術雖早於2002年由IBM所提出,然而,在前後段IC製造技術水準皆尚未成熟情況下,TSV 3D IC技術發展速度可說是相當緩慢,直至2007年東芝(Toshiba)將鏡頭與CMOS Image Sensor以TSV 3D IC技術加以堆疊推出體積更小的鏡頭模組後,才正式揭開TSV 3D IC實用化的序幕。
於此同時,全球主要晶片製造商製程技術先後跨入奈米級製程後,各廠商亦警覺到除微縮製程技術將面臨物理極限的挑戰外,研發時間與研發成本亦將隨製程技術的進步而上揚,因此,包括IBM、三星電子(Samsung Electronics)、台積電(TSMC)、英特爾(Intel)、爾必達(Elpida)等晶片製造商皆先後投入TSV 3D IC技術研發。
至2011年第4季,三星與爾必達分別推出採TSV 3D IC同質整合技術高容量DRAM模組產品,並已進入送樣階段,台積電則以28奈米製程採半導體中介層( Interposer)2.5D技術為賽靈思(Xilinx)製作出新一代現場可程式邏輯閘陣列(Field Programmable Gate Array;FBGA)產品。
然而,各主要投入TSV 3D IC半導體大廠除面對晶圓薄型化、晶片堆疊、散熱處理等相關技術層面的問題外,隨TSV 3D IC技術持續演進並逐漸導入實際製造過程中,前段與後段IC製程皆出現更多隱藏於製造細節上的問題。
加上就整體產業鏈亦存在從材料、設計,乃至生產程序都尚未訂出共通標準,而晶圓代工業者與封裝測試業者亦無法於製程上成功銜接與彙整,都將是造成延誤TSV 3D IC技術發展與市場快速起飛重要原因。
綜合各主要晶片製造商技術藍圖規畫,2011年TSV 3D IC是以同質整合的高容量DRAM產品為主,至2014年,除將以多顆DRAM堆疊外,尚會整合一顆中央處理器或應用處理器的異質整合產品。
預估要至2016年,才有機會達到將DRAM、RF、NAND Flash、CPU等各種不同的半導體元件以TSV 3D IC技術整合於同1顆IC之中異質整合水準。
TSV 3D IC技術藍圖規劃
資料來源:DIGITIMES,2012/2
留言列表