2a760c91-f993-4e6b-8b41-901aadb37421-1407779167625

密西根大學正在研發一種新型的可穿戴式蒸汽感測器,有一天將可以為患者提供不間斷的疾病監測,包括糖尿病、高血壓、貧血或肺部疾病等。
包括谷歌眼鏡和蘋果iWatch在內的可穿戴技術,都是蓬勃發展的市場,預計將在未來四年內增長到140億美元的規模。
 
新型感測器可以檢測出,空氣中含有的通過呼吸,或者由皮膚釋放出的化學物質,該設備可能會是第一款可辨識廣泛化學物質,而不是物理屬性的可穿戴設備。 密西根大學的研究人員正在與美國國家科學基金會的創新團隊合作,編寫程式來把這款行動設備從實驗室搬到市場上。
 
“每一種疾病都有它自己的生物標記,所以該設備能夠檢測出來,” 生物醫學工程教授Sherman Fan說。“例如對於糖尿病來說,丙酮是一種標記。”
其他可以被檢測出的化學元素包括一氧化氮和氧氣,它可以指出高血壓、貧血或肺部疾病的正常水準。
 
Fan正在和電氣電腦工程副教授朝暉鐘共同研發這款感測器,一同的還有正在攻讀電子工程學位元的Girish Kulkarni。研究人員說他們的設備比同行更快、更小、更可靠,他們的體積過於龐大而不適合作為可穿戴設備。新型感測器可以檢測出更廣泛的化學物質。
 
除了疾病監測外,感測器還有其他方面的應用。它能夠指示出實驗室危險化學品洩漏的情況,或者應用在其他地方,或者提供關於空氣品質的資料
“通過我們的平臺技術,我們可以測量出同一時間的各種化學物質,或者修改設備來使其僅針對特定的化學物質,所以它具備了無限的可能性,”鐘說。
 
為了創造他們的技術,研究人員採用了獨特的方法來檢測分子。
“納米電子感測器通常依賴於檢測感測器,和分子在空氣或溶液中的的電荷轉移。”Kulkarni說。
 
然而,這些以前的技術通常會導致被發現的分子,和感測器本身進行強有力的結合。 這種結合會減慢檢測的速度。
 
無需檢測分子電荷,我們使用的是一種叫做電外差混合式的技術,我們觀察這些偶極子之間的相互作用與分子之間的聯繫,同時讓納米感測器處於高頻段。”Girish說。
 
這種技術使得應用石墨烯成為了可能,結果是極快的回應時間(千分之一秒),與現有技術的幾十或幾百秒形成了鮮明的對比,它還極大地增加了設備的靈敏度。 感測器可以檢測出比率是十億分之幾的樣本分子數。
 
這些納米電子石墨烯蒸汽感測器,可以完全嵌入到微量氣體層析系統中,這對於氣體分析來說是黃金標準,研究人員說。整個微量氣體層析系統可以整合在一個低功耗的晶片上,並嵌入到只有徽章大小的裝置中,所以它可以戴在身體上來提供針對特殊環境的非侵入性和連續性監測。
 
“我們認為這個設備可能對社會非常的有益。”Fan說。
 
來源:物聯網世界網 作者:特邀記者JIM

The capabilities of wearable sensors seem to be expanding every day. However, for the most part these sensors have measured just physical attributes, like heart rate.

Now researchers at the University of Michigan have developed a graphene-based wearable sensor capable of detecting airborne chemicals that serve as indicators of medical conditions. For instance, the sensor could detect acetone, which is a biomarker for diabetes. Or it could detect abnormal levels of nitric oxide and oxygen, which would be an indicator of conditions such as high blood pressure, anemia, or lung disease.

"With our platform technology, we can measure a variety of chemicals at the same time, or modify the device to target specific chemicals. There are limitless possibilities," said Zhaohui Zhong, an associate professor at the University of Michigan, in a press release.

The researchers had to take a novel approach to how the nanosensor detect chemicals. In research, which was published in the journal Nature Communications, the Michigan researchers developed a sensing mechanism based on detecting molecular dipoles.

This sensing mechanism stands in contrast to most other nanosensors, which are based on detecting a change in charge density due to a molecule binding to the sensor.

"Nanoelectronic sensors typically depend on detecting charge transfer between the sensor and a molecule in air or in solution," said Girish Kulkarni, a doctoral candidate and one of the researchers, in a press release. "Instead of detecting molecular charge, we use a technique called heterodyne mixing, in which we look at the interaction between the dipoles associated with these molecules and the nanosensor at high frequencies."

The researchers claim that the graphene made this sensing technique possible, resulting in extremely fast response times of tenths of a second as opposed to tens or hundreds of seconds in existing technology. In addition to fast response times the sensors are highly sensitive, capable of detecting molecules with a concentration of a few parts per billion.

With these graphene-based sensors, the researchers have been able to put an entire chromatography system on a single chip that is able to operate with very little power. With this setup, a badge-side device could be worn on the body to give continuous monitoring of health conditions.

Source:IEEE

arrow
arrow
    全站熱搜

    Shacho San 發表在 痞客邦 留言(0) 人氣()